

OCENME

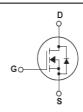
SJ-FET

OSA20N60S / OSK20N60S 600V N-Channel MOSFET

Description

SJ-FET is new generation of high voltage MOSFET family that is utilizing an advanced charge balance mechanism for outstanding low on-resistance and lower gate charge performance.

This advanced technology has been tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. SJ-FET is suitable for various AC/DC power conversion inswitching mode operation for higher efficiency.


Features

- 650V @TJ = 150 ℃
- Typ. RDS(on) = 0.16Ω
- Ultra Low Gate Charge (typ. Qg = 63nC)
- 100% avalanche tested
- · Rohs Compliant

Absolute Maximum Ratings

Symbol	Parameter		OSA-K20N60S	Unit
V _{DSS}	Drain-Source Voltage		600	V
I _D	Drain Current -Continuous (TC = 25° -Continuous (TC = 100)		20* 10*	А
I _{DM}	Drain Current - Pulsed (N	lote 1)	62*	Α
V _{GSS}	Gate-Source voltage		±30	V
E _{AS}	Single Pulsed Avalanche Energy (N	Note 2)	525	mJ
I _{AR}	Avalanche Current (Note 1)	20	Α
E _{AR}	Repetitive Avalanche Energy ((Note 1)	1	mJ
dv/dt	Peak Diode Recovery dv/dt ((Note 3)	4.5	V/ns
P _D	Power Dissipation (TC = 25°C) -Derate above 25°C		151 1.67	W W/℃
T _J , T _{STG}	Operating and Storage Temperature Ran	ige	-55 to +150	$^{\circ}$
T∟ * Drain c	Maximum Lead Temperature for Solderin Purpose, 1/8" from Case for 5 Seconds urent finited by maximum junction tempe		300	°C

Thermal Characteristics

Symbol	Parameter	OSA-K20N60S	Unit
R ₀ JC	Thermal Resistance, Junction-to-Case	0.83	°C/W
R _{0 CS}	Thermal Resistance, Case-to-Sink Typ.	0.5	°C/W
R ₀ JA	Thermal Resistance, Junction-to-Ambient	62	°C/W

Electrical Characteristics TC = 25°C unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Off Characterist	tics					
BVDSS	Drain-Source Breakdown Voltage	VGS = 0V, ID = 250μA, TJ = 25°C	600			V
		VGS = 0V, ID = 250μA, TJ = 150℃		650		٧
ΔBVDSS / ΔTJ	Breakdown Voltage Temperature Coefficient	ID = 250μA, Referenced to 25℃		0.6		V/°C
IDSS	Zero Gate Voltage Drain Current	VDS = 600V, VGS = 0V VDS =480V, TC = 125°C			1 10	μA μA
IGTSF	Gate-Body Leakage Current, Forward	VGS = 30V, VDS = 0V			100	nA
IGSSR	Gate-Body Leakage Current, Reverse	VGS = -30V, VDS = 0V			-100	nA
On Characterist	tics			•		•
VGS(th)	Gate Threshold Voltage	VDS = VGS, ID = 250μA	2.5		4.5	V
RDS(on)	Static Drain-Source On-Resistance	VGS = 10V, ID = 10A		0.16	0.19	Ω
gFS	Forward Transconductance	VDS = 40V, ID =5A (Note 4)		16		S
Rg	Gate Resistance	F=1MHz, open drain		4.5		Ω
Dynamic Chara	cteristics					
Ciss	Input Capacitance	VDS = 25V, VGS = 0V, f = 1.0MHz		1440		pF
Coss	Output Capacitance			300		pF
Crss	Reverse Transfer Capacitance			10		pF
Switching Char	acteristics					
td(on)	Turn-On Delay Time	VDD = 400V, ID = 10A RG =		25		ns
tr	Turn-On Rise Time	20 Ω (Note 4, 5)		55		ns
td(off)	Turn-Off Delay Time			70		ns
tf	Turn-Off Fall Time			40		ns
Qg	Total Gate Charge	VDS = 480V, ID = 20A VGS = 10V		63		nC
Qgs	Gate-Source Charge	(Note 4, 5)		7.8		nC
Qgd	Gate-Drain Charge			9		nC
Drain-Source D	iode Characteristics and Maximu	ım Ratings				
IS	Maximum Continuous Drain-Source Diode Forward Current				20	Α
ISM	Maximum Pulsed Drain-Source Diode	ximum Pulsed Drain-Source Diode Forward Current			60	Α
VSD	Drain-Source Diode Forward Voltage	VGS = 0V, IS = 20A			1.5	V
trr	Reverse Recovery Time	VGS = 0V, IS = 20A dIF/dt =100A/µs (Note 4)		475		ns
Qrr	Reverse Recovery Charge			5.8		μC

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature 2. L=10.5mH, I_{AS} =10A, VDD=150V, Starting TJ=25 °C 3. I_{SD} \leqslant 20A, di/dt \leqslant 200A/us, V_{DD} \leqslant BV_{DSS}, Starting TJ = 25 °C 4. Pulse Test: Pulse width \leqslant 300us, Duty Cycle \leqslant 2%

- 5. Essentially Independent of Operating Temperature Typical Characteristics

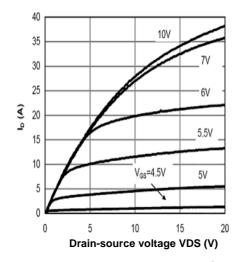
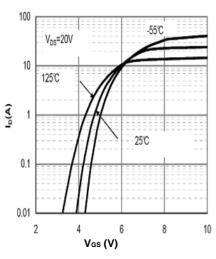



Figure 1: On-Region Characteristics@25° C

Figure 3: Transfer Charateristics

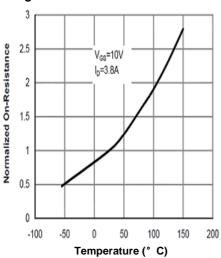


Figure 5: On-Resistance vs. Junction Temperature

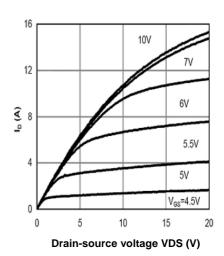


Figure 2: On-Region Characteristics@125° C

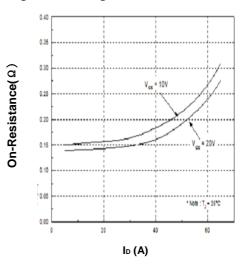


Figure 4: On-Resistance vs. Drain Current (ID)

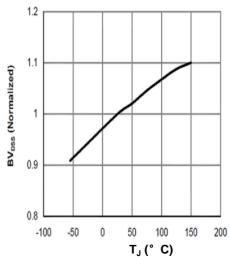


Figure 6: Break Down vs. Junction Temperature

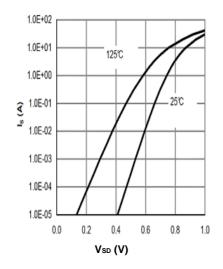


Figure 7: Body-Diode Characteristics

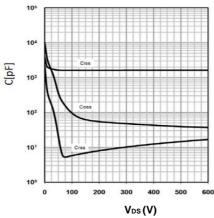


Figure 9: Capacitance Characteristics C=f(VDS), VGS=0V, f=1MHz

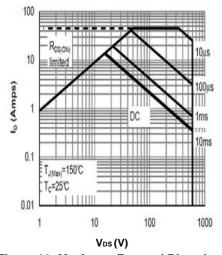


Figure 11: Maximum Forward Biased Safe Operating Area

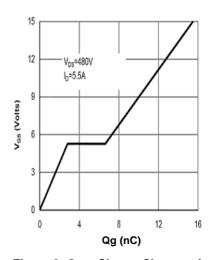


Figure 8: Gate-Charge Characteristics

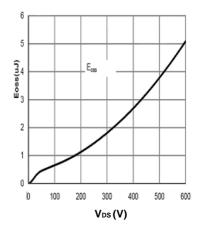


Figure 10: Coss stored Energy

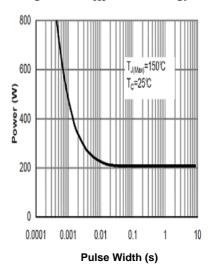


Figure 12: Single Pulse Power Rating Junction to Case

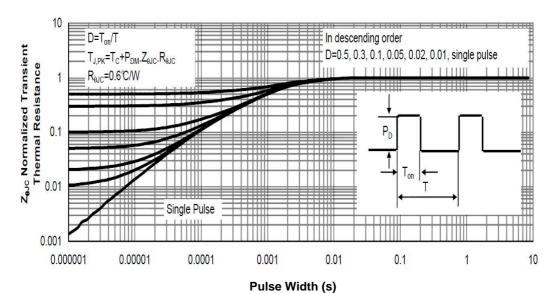
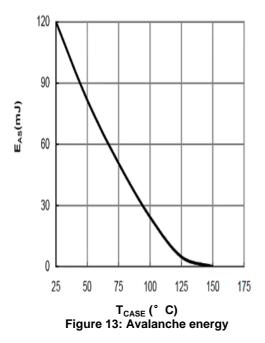
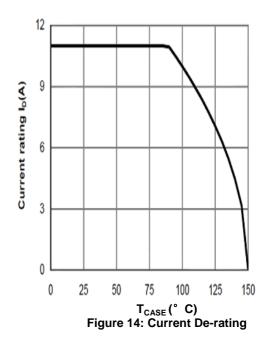
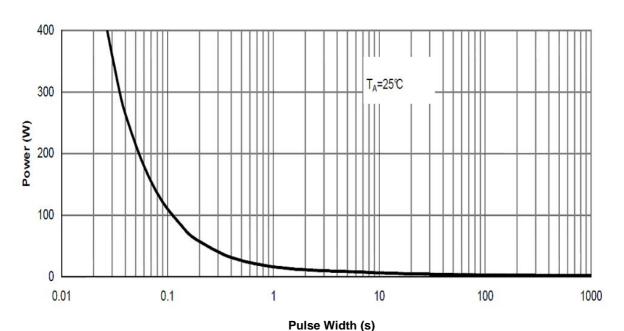
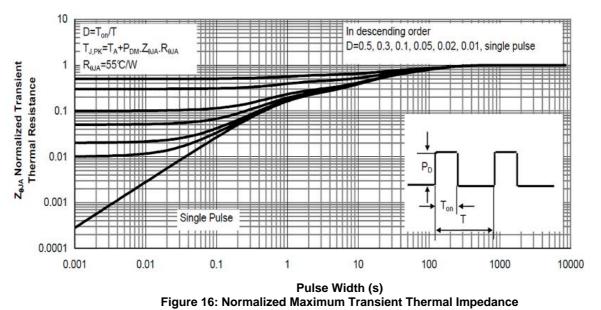
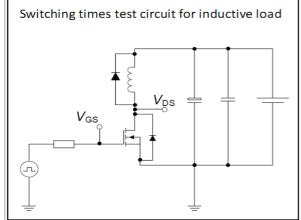
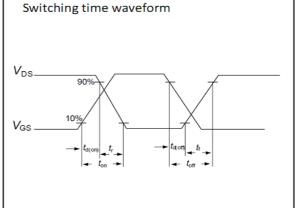
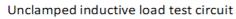
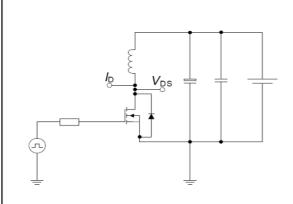




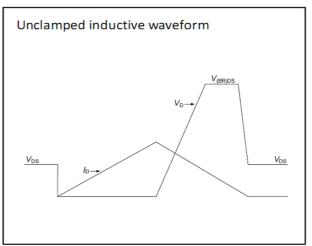
Figure 12: Normalized Maximum Transient Thermal Impedance

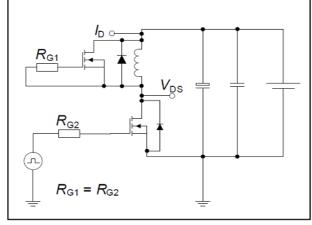

Figure 15: Single Pulse Power Rating Junction-Ambient

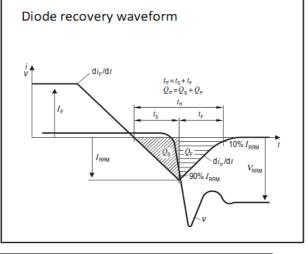

Test circuits

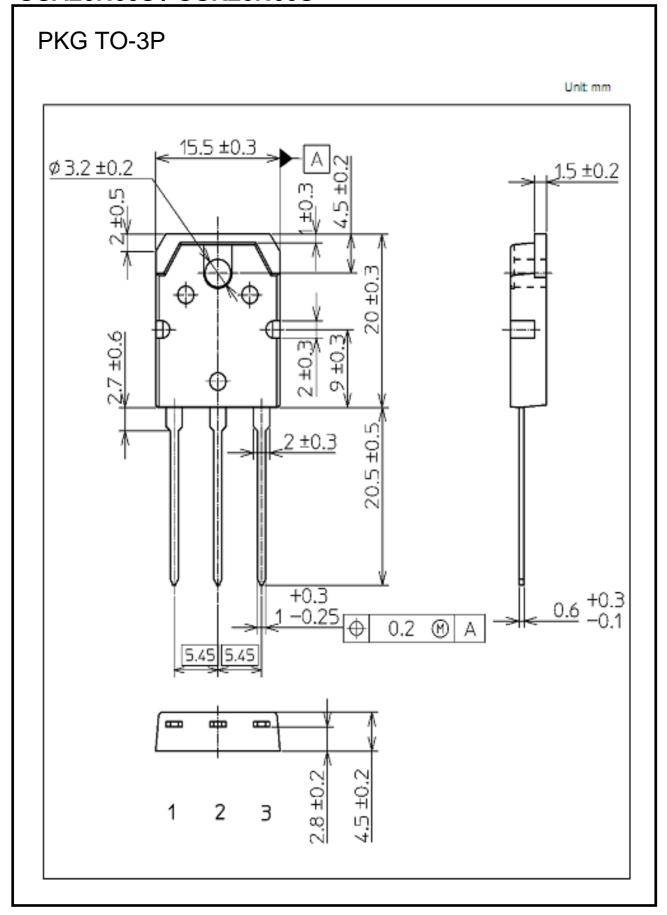

Switching times test circuit and waveform for inductive load

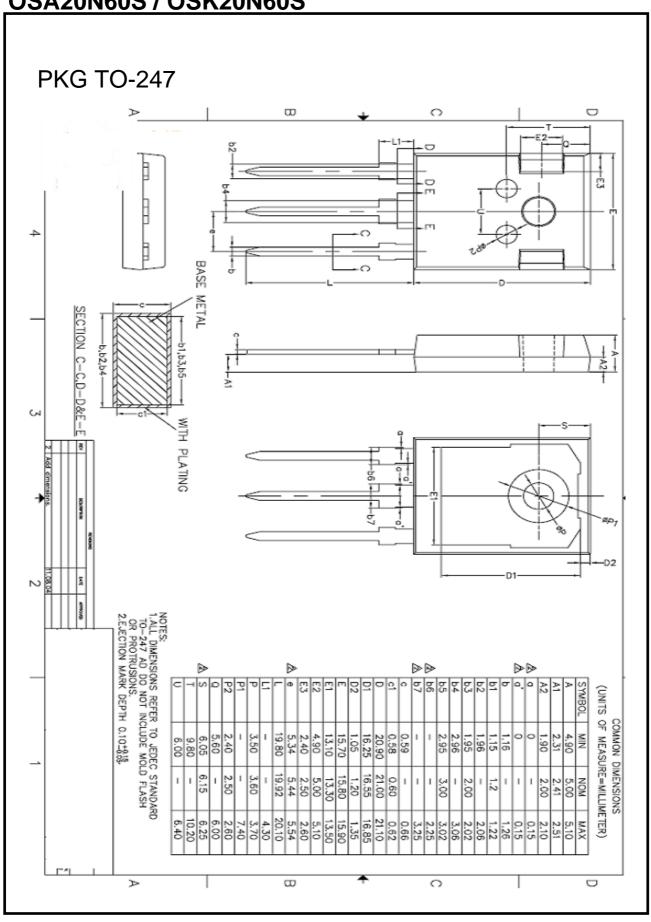


Unclamped inductive load test circuit and waveform






Test circuit and waveform for diode characteristics


Test circuit for diode characteristics

OSA20N60S / OSK20N60S **PKG TO-247**

