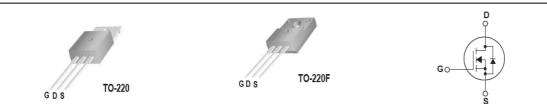
OCENME

September, 2013 SJ-FET

OSP7N60S/ OSF7N60S 600V N-Channel MOSFET


Description

SJ-FET is new generation of high voltage MOSFET family that is utilizing an advanced charge balance mechanism for outstanding low on-resistance and lower gate charge performance.

This advanced technology has been tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. SJ-FET is suitable for various AC/DC power conversion inswitching mode operation for higher efficiency.

Features

- 600V @TJ = 150 °C
- Typ. RDS(on) = 0.58 Ω
- Ultra Low Gate Charge (typ. Qg = 9nC)
- 100% avalanche tested
- Rohs Compliant

Absolute Maximum Ratings

Symbol	Parameter		OSP7N60S	OSF7N60S	Unit
V _{DSS}	Drain-Source Voltage		600		V
I _D	Drain Current -Continuous (TC = 25° C) -Continuous (TC = 100° C)		7 5	7* 5*	А
I _{DM}	Drain Current - Pulsed	(Note 1)	11	11*	А
V _{GSS}	Gate-Source voltage		±30		V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	86		mJ
I _{AR}	Avalanche Current	(Note 1)	1.7		А
E _{AR}	Repetitive Avalanche Energy (Note 1)		43		mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5		V/ns
P _D	Power Dissipation (TC = 25℃) -Derate above 25℃		104 0.8	35 0.3	W ₩/℃
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150		°C
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds		300		°C

* Drain current limited by maximum junction temperature.

Thermal Characteristics

Symbol	Parameter	OSP7N60S	OSF7N60S	Unit
R _{0 JC}	Thermal Resistance, Junction-to-Case	1.5	3.6	°C/W
R ₀ cs	Thermal Resistance, Case-to-Sink Typ.			°C/W
R _{0 JA}	Thermal Resistance, Junction-to-Ambient	75	62	°C/W

Electrical Characteristics TC = 25°C unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Ma x	Unit
Off Characteri	stics					
BVDSS	Drain-Source Breakdown Voltage	VGS = 0V, ID = 250 μ A, TJ = 25 $^{\circ}$ C	600			V
		VGS = 0V, ID = 250 μ A, TJ = 150 $^\circ \! \mathbb{C}$		650		V
\triangle BVDSS / \triangle TJ	Breakdown Voltage Temperature Coefficient	ID = 250 μ A, Referenced to 25 $^{\circ}$ C		0.6		V/℃
IDSS	Zero Gate Voltage Drain Current	VDS = 600V, VGS = 0V VDS =480V, TC = 125℃			1 10	μΑ μΑ
IGTSF	Gate-Body Leakage Current, Forward	VGS = 30V, VDS = 0V			100	nA
IGSSR	Gate-Body Leakage Current, Reverse	VGS = -30V, VDS = 0V			-100	nA
On Characteris	stics					
VGS(th)	Gate Threshold Voltage	VDS = VGS, ID = 250µA	2.5	3.5	4.5	V
RDS(on)	Static Drain-Source On-Resistance	VGS = 10V, ID =3. 5A		0.58	0.65	Ω
gFS	Forward Transconductance	VDS = 40V, ID =3. 5A (Note 4)		16		S
Rg	Gate Resistance	F=1MHz, open drain		4.5		Ω
Dynamic Char	acteristics					
Ciss	Input Capacitance	VDS = 25V, VGS = 0V, f = 1.0MHz		360		pF
Coss	Output Capacitance	-		25		pF
Crss	Reverse Transfer Capacitance			1.2		pF
Switching Cha	racteristics					
td(on)	Turn-On Delay Time	VDD = 400V, ID = 3.5A RG =		25		ns
tr	Turn-On Rise Time	20 Ω (Note 4, 5)		55		ns
td(off)	Turn-Off Delay Time			70		ns
tf	Turn-Off Fall Time			40		ns
Qg	Total Gate Charge	VDS = 480V, ID = 3.5A VGS = 10V (Note 4, 5)		8		nC
Qgs	Gate-Source Charge	(Note 4, 5)		2.0		nC
Qgd	Gate-Drain Charge			2.7		nC
Drain-Source I	Diode Characteristics and Maximu	im Ratings				
IS	Maximum Continuous Drain-Source Diode Forward Current				7	Α
ISM	Maximum Pulsed Drain-Source Diode	e Forward Current			18	Α
VSD	Drain-Source Diode Forward Voltage	VGS = 0V, IS = 7A			1.5	V
trr	Reverse Recovery Time	VGS = 0V, IS = 7A dIF/dt =100A/µs (Note 4)		190		ns
Qrr	Reverse Recovery Charge			2.3		μC

1. Repetitive Rating: Pulse width limited by maximum junction temperature 2. L=60mH, I_{AS} =1.7A, VDD=150V, Starting TJ=25 °C 3. $I_{SD} \leq 7A$, di/dt $\leq 200A/us$, $V_{DD} \leq BV_{DSS}$, Starting TJ = 25 °C 4. Pulse Test: Pulse width $\leq 300us$, Duty Cycle $\leq 2\%$ 5. Essentially Independent of Operating Temperature Typical Characteristics

Typical Performance Characteristics

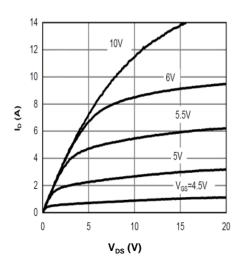
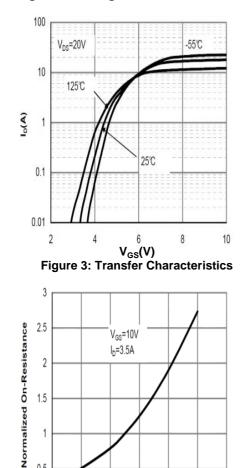



Figure 1: On-Region Characteristics@25° C

1.5

1

0.5

0

-100

-50

0

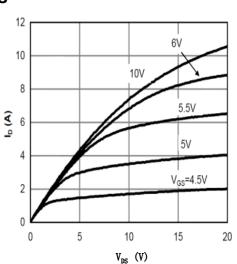


Figure 2: On-Region Characteristics@125° C

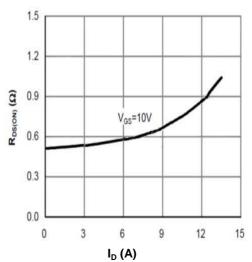
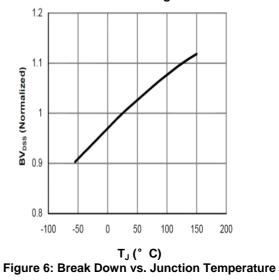
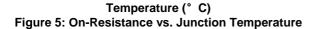
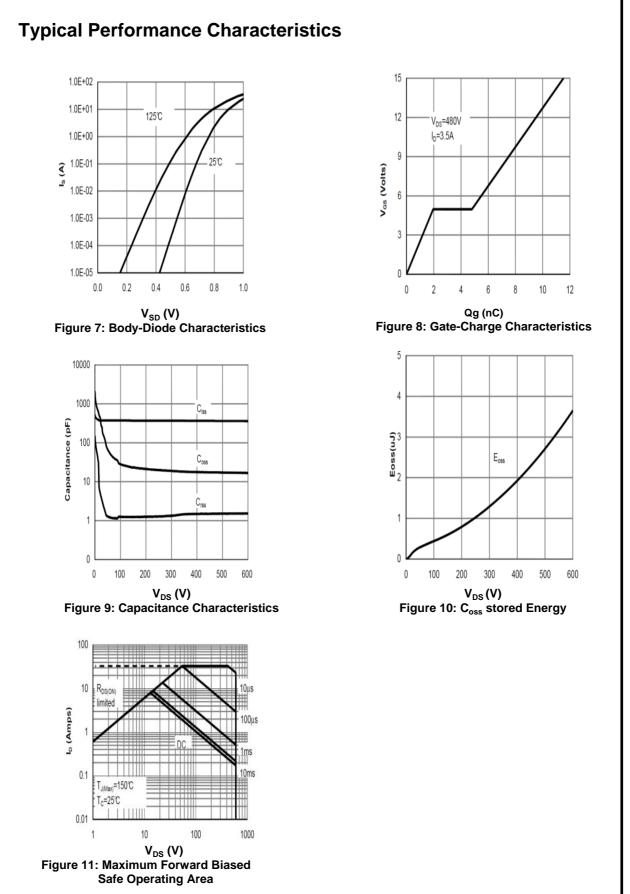
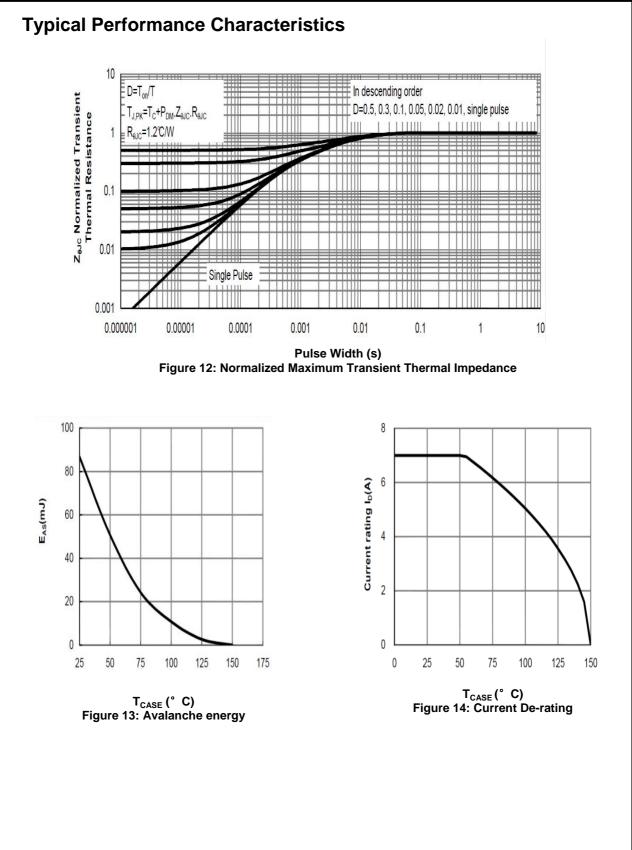
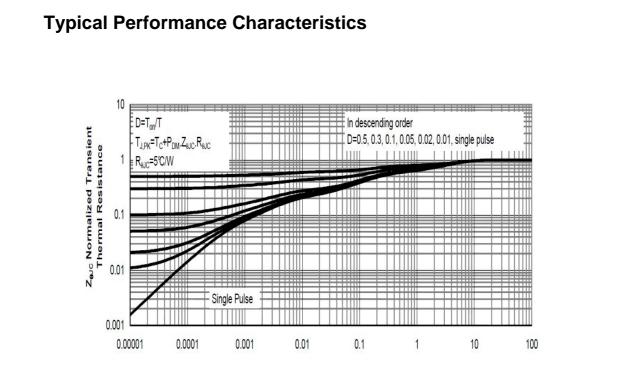




Figure 4: On-Resistance vs. Drain Current and Gate Voltage

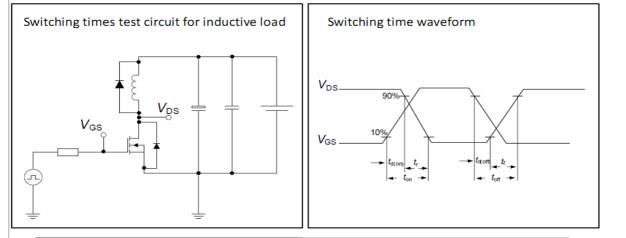


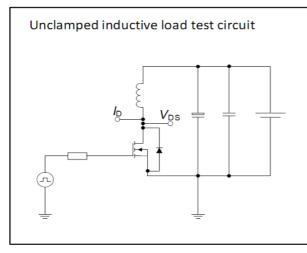

100

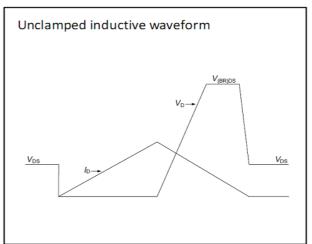

150

200

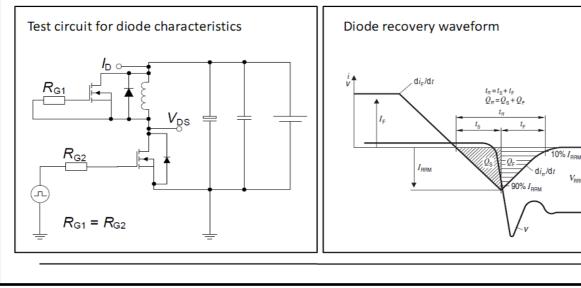
50

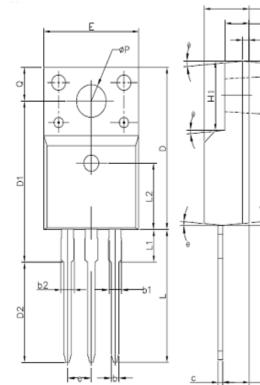


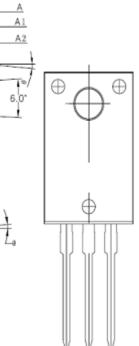

Pulse Width (s) Figure 15: Normalized Maximum Transient Thermal Impedance


Test circuits

Switching times test circuit and waveform for inductive load

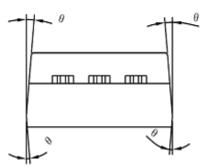

Unclamped inductive load test circuit and waveform

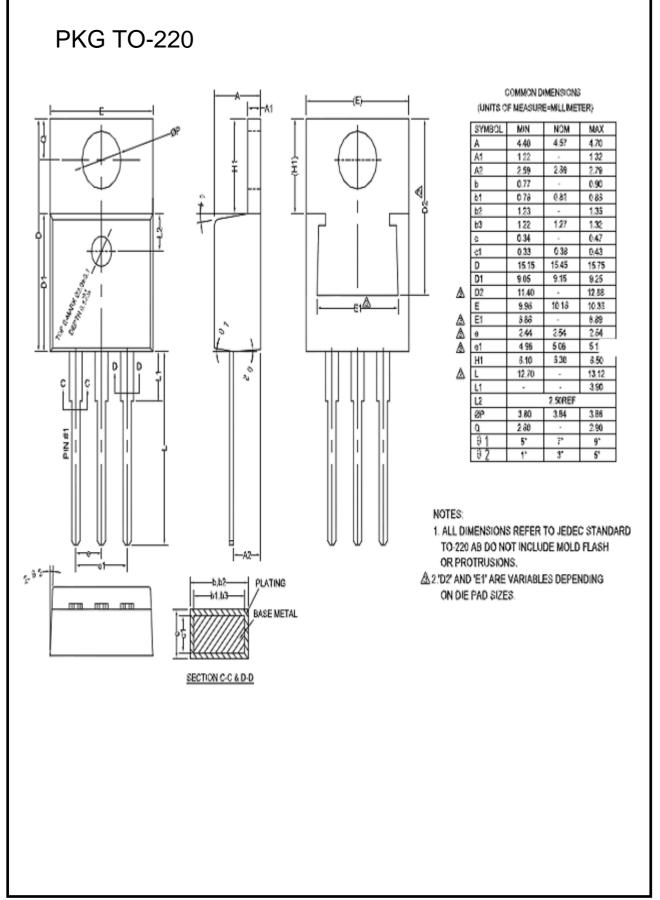



 $V_{\rm RRM}$

Test circuit and waveform for diode characteristics

PKG TO-220F





A3

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

(UNITS OF MEASURE=MILLIMETER)				
SYMBOL	MIN	NOM	MAX	
A	4.50	.50 4.70		
A1	2.34	2.54	2.74	
A2	0.70 REF			
A3	2.56	2.76	2.96	
b	0.70	-	0.90	
b1	1.18	-	1.38	
b2	-	-	1.47	
с	0.45	0.50	0.60	
D	15.67	15.87	16.07	
D1	15.55	15.75	15.95	
D2	9.60	9.80	10.0	
E	9.96	10.16	10.36	
е	2			
H1	6.48	6.68	6.88	
L	12.68	12.98		
L1	-	-	3.50	
L2	6.50REF			
øР	3.08	3.18	3.28	
Q	3.20	-	3.40	
θ	3*	5*	7*	

